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Abstract – The current study aims to increase the accessibility of Nelson’s (2024) recently 
suggested construction-based complexity measure by providing a tool that can calculate the 
measure for single or multiple texts. To validate the tool, complexity scores for the International 
Corpus Network of Asian Learners of English corpus (ICNALE) were compared with Nelson’s 
(2024) results. In addition, complexity scores were calculated for a new dataset, the Common 
European Framework of Reference English Listening Corpus (CEFR), along with the MERLIN 
corpus, which includes learner writing samples from learners of Czech, German, and Italian. 
Complexity scores generally increased across CEFR levels in all of the datasets. However, the 
complexity scores in the current study tend to be higher than the original study due to differences 
in the sentence splitting approach. The sentence tokenisation method used is deemed to be more 
appropriate, and it may be concluded that the Construction Complexity Calculator (ConPlex) tool 
accurately calculates Nelson’s measure. It is hoped that the tool will allow researchers to calculate 
the complexity of constructions at the text level for a wide range of research purposes.  
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1. INTRODUCTION 

For open science to live up to its name, the code used for data analysis should be shared, 

and researchers should be actively involved in the development of freely available tools 

(Mizumoto 2024). Several tools are already available for measuring an array of indices 

that can be utilised to assess complexity and other elements of the production of second 

language (L2) users and other texts. These include Coh-Metrix (McNamara et al. 2014), 

the tool for the Automatic analysis of Syntactic Sophistication and Complexity 

(TAASSC; Kyle 2016), and the tool for the Automatic Analysis of Lexical Diversity 

(Kyle et al. 2021). The underlying code has also been made available for the latter two 
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tools on GitHub.1 The present study is a further contribution to open science and aims to 

1) design a tool  ––the Construction Complexity Calculator (ConPlex)–– to calculate a 

recently suggested construction-based complexity measure by Nelson (2024) and 2) to 

investigate the applicability of the tool to various types of texts in multiple languages, 

namely English, Czech, German, and Italian. The paper does not only describe the 

development of the tool in detail, along with its validation by comparing complexity 

scores output by the tool with some of Nelson’s (2024) results but also highlights what 

researchers should be aware of when using the tool in their research. 

The paper is organised as follows. Section 2 discusses the notion of ‘complexity’ 

in linguistics. Section 3 offers information on the corpora used to validate the accuracy 

of ConPlex and describes how the tool has been produced. Section 4 deals with the tool 

validation results as well as its potential uses and limitations. Finally, Section 5 offers 

some concluding remarks.  

 

2. CONSTRUCTION-BASED COMPLEXITY 

There has been some recent debate about the types of measure that should be used to 

represent the construct of ‘complexity’ in linguistics or second language acquisition 

(SLA), and there has been no consensus about a common measure so far (Ehret et al. 

2023: 2). In their theoretical and methodological overview, Bulté et al. (2024) assert 

that there should be a more restricted interpretation of complexity and suggest a set of 

core measures that should be used to increase replicability and knowledge 

accumulation. They put forward a list of eight core measures of complexity which 

include moving-average type-token ratio (MATTR) for several indices, and various 

ratio-based measures at the word, phrase, clause, T-unit, and AS-unit level. Bulté et 

al.’s (2024) manuscript has provoked several ‘open peer commentary’ responses in the 

same journal. For instance, the response by Biber et al. (2024: 1–2) points out that the 

‘omnibus’ measures suggested by Bulté et al. (2024) disregard the syntactic functions of 

grammatical structures. They liken this to a biologist taking a reductionist method and 

operationalising the complexity of forests by simply calculating the average height of 

trees and the mean number of branches per tree. Biber et al.’s comment seems a valid 

point, as fine-grained measures can reveal intricate details about the grammatical 

 
1 https://github.com/kristopherkyle 

https://github.com/kristopherkyle
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complexity of a language. However, there is also a place for omnibus measures that 

represent the interaction of multiple features. If omnibus methods that match a 

theoretical construct in the field are selected, they may have the benefit of being applied 

to a wider range of texts. Omnibus measures could potentially be applied to multiple 

registers or languages without the need to create a taxonomy of grammatical 

possibilities in the target domain. The most appropriate measures might not necessarily 

be the ones suggested by Bulté et al. (2024). Appropriate measures can be selected to 

match the theoretical beliefs of the researcher and to answer specific research questions. 

There has also been disagreement regarding the use of the sentence as a syntactic unit. 

On the one hand, Bulté et al. (2024) claim that there is no linguistic definition of the 

sentence that is agreed upon and suggest that it is an unusable unit for oral data or for 

analysing texts produced by writers whose punctuation skills are limited. On the other 

hand, Lu (2024) points out that the sentence as a unit is intuitively useful in writing.  

Nelson (2024) takes an alternative approach to the measuring of complexity that is 

grounded in Complexity Theory and Construction Grammar. In some ways, Complexity 

Theory is also in line with the abovementioned measures, as “the behaviour of complex 

systems emerges from the interactions of its components” (Larsen-Freeman 1997: 143), 

and it is not concentrated on a specific component. Rather, complexity theorists are 

interested in how the parts of a complex system interact (Larsen-Freeman 1997), not 

merely in the production of a vast taxonomy of individual factors (Larsen-Freeman and 

Cameron 2008: 206). More recently, Larsen-Freeman (2017) has described Complexity 

Theory as a metatheory which also requires a theory of language and how it develops. 

One of these metatheories is Construction Grammar, in which Goldberg (2003: 219) 

defines constructions as “stored pairings of form and function, including morphemes, 

words, idioms, partially lexically filled and fully general linguistic patterns” and further 

argues that  

any linguistic pattern is recognised as a construction as long as some aspect of its form or 

function is not strictly predictable from its component parts or from other constructions 

recognised to exist. 

Construction Grammar differs from other grammar descriptions in that it aims to 

account for the whole of the language. However, no finite typology of all of the possible 

constructions in the English language has been agreed upon. Therefore, Nelson’s (2024: 

13) measure seeks to account for “how the diversity of constructions used impacts the 
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statistical properties of the texts a person produces.” The measure is calculated as shown 

below: 

𝐶(𝑑) =
1
𝑁(𝐷(𝑆!)

"

!#$

𝑃(𝑆!) 

The complexity of the document 𝐶(𝑑) is calculated as the mean diversity 𝐷(𝑆!) and the 

mean productivity 𝑃(𝑆!) of all of the sentences in the document. First the text is part-of-

speech (POS) tagged, then the diversity of each sentence is calculated by partitioning 

the tags in the sentence into lists of tag pairs. A list of tags is taken and partitioned into 

pairs at an overlap of one, meaning that the last tag in the pair (T1, T2) is the first in the 

succeeding pair (T2, T3). For example, the sentence from Mary Shelley’s Frankenstein 

would be converted into tag pairs as shown in (1): 

(1) Sentence: “There is something at work in my soul, which I do not 
understand.” 
Tagged sentence: There_EX is_VBZ something_NN at_IN work_NN in_IN 
my_PRP$ soul_NN which_WDT I_PRP do_VBP not_RB understand_VB 
Tag pairs: (‘EX’, ‘VBZ’), (‘VBZ’, ‘NN’), (‘NN’, ‘IN’), (‘IN’, ‘NN’), (‘NN’, 
‘IN’), (‘IN’, ‘PRP$’), (‘PRP$’, ‘NN’), (‘NN’, ‘ WDT ‘), (‘WDT’, ‘PRP’), 
(‘PRP’, ‘VBP’), (‘VBP’, ‘RB’), (‘RB’, ‘VB’) 

Next, the ‘Shannon entropy’ (Shannon 1948) of tag pairs is calculated, the mean of 

which contributes to the complexity score for the text. The productivity of each sentence 

is calculated as the entropy of word tag pairings minus the entropy of tags. 1 is added to 

the productivity calculation to account for situations when the entropy of word tag 

pairings is 0 or less than 1. The sentence in the Frankenstein example above is 

comprised of 13 unique pairings of a tag and a word but only ten tags. This is because 

there are three nouns (something, work, and soul) tagged as ‘NN’ and two prepositions 

(at and in) tagged as ‘IN’. This information is used in the productivity calculation. 

Given pairs of words and their tags (e.g., pairs = {{there, EX}, {is, VBZ}, … 

{understand, VB}}) which can be represented as two ordered lists (i.e., tags = {EX, 

VBZ, … VB} and words = {there, is, …understand}), productivity is calculated as the 

conditional entropy of the words given the tags or H(words | tags) = H(tags, words) - 

H(tags). The complexity of the sentence is calculated by multiplying diversity and 

productivity, as they are held to interact. The complexity of a document is taken as the 

mean of the complexity of all the sentence-level complexity scores in the document.  
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Nelson (2024) clearly shows how measuring diversity in this way can represent 

the complexity of constructions using POS graphs. In addition, the sentence in (2), 

taken from F. Scott Fitzgerald’s The Great Gatsby, is used as an example to illustrate 

the need for the productivity element of the measure. 

(2) The apartment was on the top floor - a small living-room, a small dining-
room, a small bedroom, and a bath. 

If the first two occurrences of small in the sentence were replaced by cosy and spacious, 

the productivity score for the sentence would increase due to the wider range of word 

tag pairings. This, in turn, would increase the complexity score. Objectively, the 

sentence containing a wider variety of adjectives would likely be considered more 

complex by most if not all readers. Calculating complexity in this way is in line with 

one of Larsen-Freeman and Cameron’s (2008: 206) methodological principles to 

identify collective variables that are characteristic of multiple elements interacting 

within a system. Although only one complexity score is output for each text, the score 

represents the interaction of components within the system, as opposed to a vast 

taxonomy of individual scores that represent individual components in the system. In 

this sense, the measure could be said to be more in line with Complexity Theory.  

In addition to proposing the measure, Nelson (2024) also applies it to several 

datasets and shows that complexity scores increase 0.015 per month with L1 acquisition 

data from children (MacWhinney 2000). Furthermore, results from a Bayesian 

hierarchical model show that an increase in complexity measure scores correlates with 

the proficiency level of L2 learners in data taken from the International Corpus 

Network of Asian Learners of English (ICNALE; Ishikawa 2023). The measure also 

shows strong correlations with traditional readability measures. Moreover, when 

comparing U.S. presidential campaign speeches from 2016, results from a mixed effects 

model suggest that complexity is not affected by text length.  

Although the theory behind Nelson’s (2024) construction-based complexity 

measure has been summarised here, it is highly recommended that readers interested in 

using the ConPlex engage with Nelson’s paper, where a more detailed theoretical 

background is provided. 
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3. TOOL CREATION 

This section introduces the corpora used to validate the accuracy of ConPlex and 

describes the technical steps taken to produce the tool. 

 

3.1. Corpora used to validate the tool 

To assess the accuracy of the tool output, the complexity scores from the spoken 

monologues and written essays in ICNALE were compared with Nelson’s (2024) 

results, which were obtained after contacting the researcher. ICNALE includes 4,400 

spoken monologues and 5,600 written essays produced by university students in ten 

countries across Asia. As such, it is one of the largest publicly available learner corpora 

and includes texts at the A2, B1_1, B1_2, and B2+ CEFR levels. The corpus also 

includes data produced by native speakers of English who completed the same spoken 

and written tasks as the L2 users. The transcripts of the monologues and written essays 

were used in the analysis and no further pre-processing was done to the texts.  

To evaluate the tool further, complexity scores were calculated for a new dataset, 

the CEFR English Listening Corpus. This corpus was compiled by the author from 

listening texts that are freely available for language study online. The first source of 

texts includes two British Council websites2 that feature listening texts and videos that 

have been produced for the website, and YouTube videos that are not produced by the 

British Council. Each text has been assigned a CEFR level by the producers of the 

website. In some cases, the CEFR level is broad, spanning several levels, such as B1-B2 

and B2-C1-C2. In these cases, the lowest CEFR level was counted.  

In order to increase the size of the corpus, listening texts from the CEFR-aligned 

Cambridge exams, 3  which are available online for exam preparation, were added. 

Although these texts have a different purpose, they were selected for the corpus to 

include a range of texts aimed at L2 learners of English for practicing and assessing 

their own listening. The final corpus size was 728 texts and 345,104 words, as can be 

noticed in Table 1, where more detailed information about the number and length of 

texts from each source is provided.  

 
 

2 https://learnenglish.britishcouncil.org/ and https://learnenglishteens.britishcouncil.org/ 
3 https://www.cambridgeenglish.org/learning-english/exam-preparation/ 

https://learnenglish.britishcouncil.org/
https://learnenglishteens.britishcouncil.org/
https://www.cambridgeenglish.org/learning-english/exam-preparation/
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Text source Texts Tokens Text length (tokens) 
  M SD Min Max 

British Council 563 303,959 540 560 54 4,751 
Cambridge Exams 165 41,145 249 200 47 851 
Total 728 345,104 474 516 47 4,751 

Table 1: Size of the CEFR English Listening Corpus 

The distribution of texts by CEFR level and text type is shown in Table 2. A limitation 

of the CEFR English Listening Corpus is how imbalanced the dataset is. In particular, 

only six texts in the corpus are classified as C2 level, all of which were Cambridge 

listening texts. As the purpose of this part of the study was to investigate whether 

complexity scores increase across CEFR levels, the C2 level was still included as a 

separate class, instead of merging it with the C1 level.  

Text type A1 A2 B1 B2 C1 C2 Total 
BC Listening 24 41 34 52 22 0 173 
BC Videos 15 0 104 15 9 0 143 
BC YouTube 0 2 34 157 54 0 247 
Cambridge 18 32 38 53 18 6 165 
Total 57 75 210 277 103 6 728 

Table 2: Text types by CEFR level in the CEFR English Listening Corpus 

In both cases the transcripts produced by the material creators were used. The British 

Council texts each had a transcript available online, which was presumably produced or 

at least checked by the creators of the website. For the Cambridge listening exams, 

transcripts were included in PDF files that were available with the audio files. The 

CEFR English Listening Corpus has not been released due to copyright.  

While the desktop version of ConPlex currently supports only English texts, the 

underlying code is available as a Python notebook on GitHub.4 This enables researchers 

to adapt the code to investigate complexity in other languages. In the current study, the 

multilingual MERLIN corpus (Boyd et al. 2014) was used to evaluate the application of 

the complexity measure to three different languages. The MERLIN corpus features texts 

written by learners of Czech, German, and Italian that were taken from CEFR-aligned 

written examinations. CEFR levels containing fewer than ten texts per language were 

not included in the analysis. The final corpus size is described in terms of texts in Table 

3, and in terms of tokens in Table 4. As part of the MERLIN corpus project, the CEFR 

level of each text was re-rated by specially trained testers in what was termed as a ‘fair 
 

4 https://github.com/cooperchris17/ConPlex (accessed 10 March 2025). 

https://github.com/cooperchris17/ConPlex
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rating’. This rating was used in the current study to represent the CEFR level. The plain 

text versions of the texts were used and no further pre-processing steps were taken. 

 
Language A1 A2 A2+ B1 B1+ B2 B2+ C1 Total 
Czech  76 112 90 75 72   425 
German 57 199 107 217 115 219 73 42 1,029 
Italian 29 289 92 341 53    804 

Table 3: Number of texts per CEFR level in the MERLIN corpus used in the current study 

Language Texts Tokens Text length (tokens) 
  M SD Min Max 

Czech 425 61,013 61,013 61,013 61,013 61,013 
German 1,029 126,468 126,468 126,468 126,468 126,468 
Italian 804 93,292 93,292 93,292 93,292 93,292 
Total 2,258 280,773 474 280,773 280,773 280,773 

Table 4: Size of the MERLIN corpus used in the current study 

It should be noted that a complexity measure that has been designed and validated on 

the English language will not necessarily behave in the same way when used with other 

languages. Previous research has shown that there are several differences between the 

three languages in the MERLIN corpus when compared to English. For example, 

Kettunen (2014) measured the complexity of the European Union constitution written in 

21 languages using a morphological complexity measure and two type-token ratio 

(TTR) metrics. Of the four languages considered in the current study, English and 

Italian were the least complex for all the measures, German was the most 

morphologically complex, and Czech had the highest TTR scores. It has also been 

pointed out that Czech has an overt inflectional morphology, whereas the morphological 

features of English are predominantly analytic (Hledíková and Ševčíková 2024). Also, 

when compared with German, the distance between form and meaning is often greater 

in English (Hawkins 2015). Due to these and other differences, complexity scores will 

not necessarily be comparable between languages. However, as the grammatical 

constraints of an individual language impact texts written or spoken in that language in 

a similar way, the measure should be suitable for at least an initial exploratory 

investigation of languages other than English.  
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3.2 Producing the tool 

The tool was designed to be accessible to as many researchers as possible. While the 

code to calculate complexity in Nelson’s (2024) paper was written in Mathematica, 

Python was chosen for ConPlex. Python is one of the most widely used programming 

languages: it is highly readable and often used for natural language processing tasks. 

This makes it a suitable choice, as researchers may wish to adapt the code that is 

released with ConPlex. In addition, while Nelson (2024) worked with POS tagged texts 

that had been processed before the complexity analysis, ConPlex was designed to accept 

plain text files and handle POS tagging within the tool. This is simpler for the end user, 

as they do not need to use a separate tool to tag their texts. Furthermore, it avoids the 

problem of dealing with output from different taggers, which are likely to follow 

inconsistent formatting standards. Stanza (Qi et al. 2020) is used in ConPlex to split the 

texts into sentences and to tag the texts with treebank-specific POS tags. Next, tokens 

tagged with the universal POS tag ‘PUNCT’, meaning all punctuation, are excluded 

from the analysis. Then, all words are converted to lower case to avoid words that are 

used more than once in the same sentence being counted as different words when they 

occur at the beginning of a sentence. Stanza was initially chosen to replicate the fact that 

Nelson (2024) used the Stanford Tagger in his analysis. 5  The NLP library SpaCy 

(Honnibal et al. 2023) was also trialled, but inspection of the output showed that Stanza 

was more accurate for sentence tokenisation. Diversity, production, and complexity 

were calculated as described in Section 2 and the entropy function in SciPy (Virtanen et 

al. 2020) was used in the calculations. After trialling the code in a Python notebook, a 

downloadable app was created using PyQt5.6 Producing a downloadable app allows 

researchers who are not familiar with Python to use the tool with a graphical user 

interface.7 While it is assumed that most researchers will use the downloadable app for 

the analysis of English texts, a notebook with the Python code behind the tool is also 

available on GitHub. Widgets have been added to the notebook so the functionality is 

the same as the downloadable tool. Sharing the Python code in this way makes it 

possible for researchers to adapt the code to suit their research goals. Reasons for 

 
5 https://techfinder.stanford.edu/technology/stanford-part-speech-tagger 
6 https://www.riverbankcomputing.com/software/pyqt/ 
7  The Windows version of the app is available at 
https://drive.google.com/file/d/1PljHorFOaXYTIar527GMaDibNAzk6Coo/view (accessed 10 March 
2025) and links to the OSX and Linux versions will be added to the app’s GitHub page at 
https://github.com/cooperchris17/ConPlex (accessed 10 March 2025) when they are ready. 

https://techfinder.stanford.edu/technology/stanford-part-speech-tagger
https://www.riverbankcomputing.com/software/pyqt/
https://drive.google.com/file/d/1PljHorFOaXYTIar527GMaDibNAzk6Coo/view
https://github.com/cooperchris17/
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adapting the code might include trying the complexity measure with other languages, as 

demonstrated in the current study, or changing the tagger to one that is more appropriate 

for the users' texts. The algorithm used in ConPlex is illustrated in Figure 1. 

 

Figure 1: Visualisation of the algorithm used to calculate complexity in ConPlex 

 

4. THE FINISHED TOOL 

A screenshot of the downloadable app is shown in Figure 2. The tool has two input 

methods. The first option is to copy and paste one text into the textbox in the tool’s 

interface, then click ‘Process Text Input’ to begin processing. For uploading one or 

multiple plain text files, the user can click ‘Upload and Process Files’. For this option, 

processing begins as soon as the files have been selected. The tool outputs the mean 

complexity score for each text, along with the mean diversity and mean productivity 

scores. It is expected that most researchers will only use the complexity scores. 
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Figure 2: Screenshot of ConPlex in Windows 

 

4.1. Tool validation results 

The complexity scores calculated for the ICNALE texts are shown in Figure 3. The first 

point to note is that there is a progression across CEFR levels in both the present study 

and Nelson (2024). This is clearly evident in the central tendencies indicated by the 

boxplots and distributions shown in the violin plots. The progression cannot be 

described as linear, but this is in line with Complexity Theory, as “learning is not 

climbing a developmental ladder; it is not unidirectional.” (Larsen-Freeman 2017: 27). 

The two additional points to note about Figure 3 are 1) the difference between scores in 

the current study and Nelson (2024) and 2) the substantial number of outliers. 

 

Figure 3: ICNALE complexity score distribution in the present study and Nelson (2024)  
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For a more fine-grained analysis, the difference between the scores for each text was 

calculated. Descriptive statistics are shown in Table 5 and the distribution of differences 

in complexity scores is illustrated in Figure 4. Positive values indicate higher scores in 

the current study and negative values indicate higher scores in Nelson (2024). In the 

current study, productivity scores are generally similar but slightly higher, and the 

diversity scores from Nelson (2024) are generally higher. The complexity scores are 

also slightly higher for the most part here. Some of the differences are extreme, with the 

maximum difference being 17.77. Despite these differences, Figure 4 illustrates that the 

differences for the majority of the texts are close to zero. 

Measure M SD Min Q1 Mdn Q3 Max 
Complexity 0.70 1.99 -5.10 0.09 0.28 0.59 17.77 
Diversity -0.03 0.54 -2.14 -0.16 -0.09 -0.04 3.24 
Productivity 0.14 0.27 -0.66 0.03 0.08 0.15 2.31 

Table 5: The difference between individual texts in the current study and Nelson (2024) 

 

 

Figure 4: Difference in ICNALE complexity scores in the current study and Nelson (2024) 

The reason for the difference in complexity scores was investigated by consulting texts 

that had large differences in the two studies. It was found that the differences seemed to 

be largely caused by sentence tokenisation. In the current study, texts were split into 

sentences using Stanza. However, Nelson (2024) used the period POS tag in the 

Stanford Tagger to split sentences at the following punctuation marks: “.”, “?”, and “!”. 

For example, the sentence “3. must fast show to arrive at the attention in serve.” was 

split into one sentence in this study, but in two in Nelson (2024). In addition, Nelson 

(2024) attempted to deal with learner texts that did not include accurate sentence 
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punctuation by splitting texts that featured less than two period POS tags into sentences 

every ten words using a bespoke function labelled ‘safeBreaks’. When an equivalent 

function to safeBreaks was added to the ConPlex code, the mean difference in scores 

reduced slightly to 0.51 (SD = 1.42). However, there were still extreme differences (max 

= 13.25) and the median difference was the same (Mdn = 0.28). There are some other 

small differences between the two implementations. The first is the handling of sentence 

internal punctuation: while ConPlex removes all punctuation based on the universal 

POS tag ‘PUNCT’ assigned by Stanza, Nelson’s (2024) code only seems to remove 

commas. In addition, there may be differences in the way that entropy is calculated in 

Python when compared with Mathematica. 

Despite these differences, no changes were made to ConPlex. The motivation for 

this is that the method of sentence tokenisation in this study seems to represent 

sentences more accurately than splitting by any occurrence of a period POS tag. In 

addition, a similar function to safeBreaks was not added, as this is the kind of 

methodological decision that should be made by individual researchers at the corpus 

pre-processing stage to match the research questions of the project. The inability to 

replicate Nelson’s (2024) results precisely is a limitation of the current study. To 

somewhat overcome this limitation, the Python code used in ConPlex is shared on 

GitHub so that interested researchers can compare it with the Mathematica code shared 

in the supplementary information in Nelson’s (2024) paper.  

The results from the CEFR English Listening Corpus are shown in Figure 5. The 

plots represent the distribution of scores throughout the sample. The median is indicated 

by the solid lines in the boxplots and the mean is indicated by the dotted lines. An 

incremental increase in complexity scores is evident by examining the boxplots. 

However, the distributions that are visualised by the violin plots reveal a distinct 

increase between the B1 and B2 level, and to a lesser extent between the A1 and A2 

levels. There are also fewer outliers when compared with the ICNALE data. This could 

be related to the difference in corpus size, but it might also be related to the more 

consistent nature of sentence punctuation that exists in transcripts that have been 

prepared by educational professionals to support learning from listening texts, when 

compared with written and spoken texts that have been produced by L2 users of the 

language. Although no previous studies have assessed the complexity of CEFR-aligned 

listening texts, the results of the current study are somewhat similar to previous research 
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that investigated the features that discriminated between sentences that were rated from 

A1 to C2 level. Uchida et al. (2024) found that sentences at A and B levels showed 

lexical and syntactic variation, whereas B- and C-level texts could only be distinguished 

by lexical aspects. There is greater difference between the A1 and B2 levels in the 

CEFR English Listening Corpus, suggesting that the complexity of constructions is also 

more variable at the lower CEFR levels.  

 

 

Figure 5: Distribution of complexity scores in the CEFR English Listening Corpus 

The results from the MERLIN corpus are visualised in Figures 6, 7, and 8 for Czech, 

German, and Italian, respectively. The general trend for German and Italian texts is an 

increase across CEFR levels. These findings are in line with previous research into L2 

German complexity (Weiss and Meurers 2019) that demonstrated accurate text 

classification from the A2 to B2 level with a selection of 150 complexity features. 

Classification accuracy was much lower for the A1 and C1/C2 levels, but the general 

trend aligns with the current study’s results, that complexity increases with CEFR level. 

In L2 Italian, morphological complexity has been shown to be able to distinguish 

between low- and high-level proficiency learners between the A2 and B2 level (Brezina 

and Pallotti 2019). However, it was not able to distinguish between the B1 and C2 

CEFR levels (Spina 2025). While the current study showed a clear progression, 

particularly from the A2 to B1+ level, it is not clear whether construction complexity 

also levels off at the independent to proficient level. Future research could investigate 

this further with L2 Italian corpora for higher proficiency learners.  
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Figure 6: Distribution of complexity scores in the MERLIN corpus: Czech 

 

 

Figure 7: Distribution of complexity scores in the MERLIN corpus: German 

 

 

Figure 8: Distribution of complexity scores in the MERLIN corpus: Italian 
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On the other hand, for Czech texts, there seems to be a clear split between complexity 

scores at the lower levels (A2, A2+, B1) and the higher levels (B1+, B2), whereas the 

variation within these two groups is more limited. These results somewhat align with 

previous L2 Czech research (Nogolová et al. 2023) that showed a tendency for sentence 

length, clause length, and number of clauses per sentence to increase from the A1 to B2 

level. From the C1 level there was little or no increase in the metrics. Although the 

researchers pointed out that clause length does not always indicate an increase in 

syntactic complexity, they argued that clause and sentence length are likely to 

somewhat correspond with syntactic knowledge. The reason for the difference in CEFR 

level increase thresholds could be related to the difference in the operationalisation of 

complexity, or the corpora used in the study. Future research might compare the 

different complexity measures on the same corpora for further insight into their 

alignment, or lack thereof.  

Overall, the results of the additional datasets analysed in the current study provide 

further evidence that Nelson’s (2024) complexity measure is able to reveal patterns in 

listening texts in line with the developmental level of the L2 users that they are aimed 

at. Furthermore, a similar pattern is evident in written texts produced by learners of 

Czech, German, and Italian.  

 

4.2. Potential uses and limitations 

ConPlex has several potential uses, as Nelson’s (2024) complexity measure is designed 

to measure the developmental complexity of language in general, meaning that it is not 

limited to SLA. It could be used to investigate the complexity of production by first 

language (L1) and L2 users across developmental levels such as age or CEFR level, as 

demonstrated by Nelson (2024). In addition, further research could investigate the 

nature of how construction-based complexity increases across texts that have been 

produced for L2 reading or listening, as was partially demonstrated in the current study. 

If a larger corpus was used, a benchmark for each CEFR level could be suggested to 

measure the complexity of constructions in individual texts. This could provide useful 

guidelines about the tendencies of text complexity that could be useful for educators and 

language learners when selecting appropriate texts. The current study also showed that 

the trend for an increase in construction complexity across CEFR levels extends to 

languages beyond English. So far, only Czech, German, and Italian have been 
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considered, but future research could be extended to any of the 70 human languages, at 

the time of writing, that are supported with pretrained neural models in Stanza. It would 

be worth investigating the constructional complexity of languages in relation to known 

differences between the languages, such as morphological complexity or word order 

freedom. In Nelson’s (2024) study, the complexity measure was also applied to political 

speeches. With this in mind, the measure might be of interest to digital humanities 

researchers if they wish to compare the complexity of constructions used by particular 

authors, orators, or other language users.  

Recently, complexity measures are often integrated into methodologies that aim to 

assess the readability of texts (Crossley et al. 2023), L2 learner writing (Lu 2017), and 

within the complexity, accuracy, fluency, and lexis framework to measure L2 language 

performance (Skehan 2009). They can also support the evaluation of interlanguage 

development over time and provide support in answering other fundamental questions 

in SLA (Bulté et al. 2024). ConPlex could be used to incorporate construction-based 

complexity into these and other frameworks in the fields of SLA, natural language 

processing, and beyond. 

The main limitation of the tool is its sensitivity to sentence boundaries. How to 

pre-process texts into sentences is an important methodological consideration that must 

be made by researchers before using ConPlex. In particular, how spoken texts should be 

segmented into sentences to represent complexity across utterances is something that 

should be considered further. Although Nelson’s (2024: 23) research showed that the 

contribution of mode to complexity was small when considering the spoken and written 

texts in ICNALE, it could be the case that spoken texts have a different complexity 

threshold to written texts when other corpora are considered. It is possible that the tool 

could potentially be biased towards measuring complexity in written texts due to its use 

of the sentence as the unit of measurement. However, these suggestions need to be 

further investigated in empirical research. Another limitation is the one-dimensional 

nature of the output of the tool. Depending on the tool’s uptake in the research 

community, further features could be added. For example, complexity scores could be 

output at the sentence level to allow for more fine-grained analysis and the investigation 

of complexity across texts. In addition, the tagged sentences and tag pairs for each 

sentence could be output or visualised, so researchers can gain more insight into the 

kinds of constructions that are being used across sentences and texts. 
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5. CONCLUSION 

The current study has fulfilled its aim of producing a tool that adequately replicates 

Nelson’s (2024) construction-based complexity measure. Although there were 

differences in the ICNALE complexity scores between both studies, the way that 

sentences were operationalised here, using Stanza, allows for more accurate calculation 

of the measure. The creation and release of ConPlex will allow more researchers to 

experiment with using this complexity measure to answer a range of research questions. 

The release of the code along with the tool allows for further modifications to make the 

tool applicable to other languages, as was demonstrated in the current study with Czech, 

German, and Italian, and texts that require different taggers. It is hoped that the research 

community will embrace the tool, adding another dimension to the complexity measure 

debate. 
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