Machine learning classification of pronunciation difficulty for learners of English as a Foreign Language
DOI:
https://doi.org/10.32714/ricl.06.01Keywords:
phonetic learner corpus, English as a Foreign Language, pronunciation difficulty, Machine-learning classificationAbstract
This study compiled and assessed a learner corpus to measure the difficulty of pronouncing a sentence (henceforth, pronounceability). The method of measuring pronounceability is useful for computer-assisted language learning of English as a Foreign Language that employs online materials as a resource for pronunciation training. An advantage of this resource is that learners can select materials depending on their interest, a disadvantage being that pronounceability is unknown to learners. If pronounceability is automatically measured, learners can independently access materials appropriate for their proficiency levels without teachers’ assistance. The pronounceability assessment demonstrated moderate reliability and partial validity when it was measured by learners’ subjective judgment on a five-point Likert scale. Given the reliability and validity, this study developed a pronounceability measuring method utilizing a machine learning algorithm that automatically predicts the pronounceability of a sentence based on the linguistic features of the sentences and learners’ features (i.e. learners’ scores for an English proficiency test). The proposed measuring method demonstrated a higher classification accuracy (53.7 percent) than the majority class baseline (46.0 percent).
Downloads
References
Brown, James D. 1996. Testing in language programs. Englewood Cliffs, NJ: Prentice-Hall.
Chall, Jeanne S. and Harold E. Dial. 1948. Predicting listener understanding and interest in newscasts. Educational Research Bulletin 27/6: 141–153+168.
Chauncey Group International. 1998. TOEIC technical manual. Princeton, NJ: Chauncey Group International.
Cronbach, Lee J. 1970. Essentials of psychological testing. 3rd edition. New York: Harper & Row.
Delais-Roussarie, Elisabeth, Fabián Santiago and Hi-Yon Yoo. 2015. The extended COREIL corpus: first outcomes and methodological issues. In Proceedings from the Workshop on Phonetic Learner Corpora, International Congress of the Phonetic Sciences, 57–59.
Deterding, David. 2006. The North Wind versus a Wolf: short texts for the description and measurement of English pronunciation. Journal of the International Phonetic Association 36/2: 187–196.
Fang, Irving E. 1966. The ‘Easy listening formula’. Journal of Broadcasting 11/1: 63–68.
Gósy, Mária, Dorottya Gyarmathy and András Beke. 2015. The development of a Hungarian-English learner speech database and a related analysis of filled pauses. In Proceedings from the Workshop on Phonetic Learner Corpora, International Congress of the Phonetic Sciences, 61–63.
Graham, Calbert, Andrew Caines and Paula Buttery. 2015. Phonetic and prosodic features in automated spoken language assessment. In Proceedings from the Workshop on Phonetic Learner Corpora, International Congress of the Phonetic Sciences, 37–40.
Hwang, Myung-Hee. 2005. How strategies are used to solve listening difficulties: listening proficiency and text level effect. English Teaching 60/1: 207–226.
International Phonetic Association. 1999. Handbook of the International Phonetic Association: a guide to the use of the International Phonetic Alphabet. Cambridge: Cambridge University Press.
Kiyokawa, Hideo. 1990. A formula for predicting listenability: the listenability of English language materials 2. Wayo Women’s University Language and Literature 24: 57–74.
Kotani, Katsunori, Shota Ueda, Takehiko Yoshimi and Hiroaki Nanjo. 2014. A listenability measuring method for an adaptive computer-assisted language learning and teaching system. Proceedings of the 28th Pacific Asia Conference on Language, Information and Computation, 387–394.
Lai, Degang. 2015. A study on the influencing factors of online learners’ learning motivation. Higher Education of Social Science 9/4: 26–30.
Meyer, David. 2012. Support Vector Machines. The interface to libsvm in package e1071. https://datajobs.com/data-science-repo/SVM-in-R-[David-Meyer].pdf (accessed 27 July 2018)
Xia, Menglin, Ekaterina Kochmar and Ted Briscoe. 2016. Text readability assessment for second language learners. In Proceedings of the 11th Workshop on Innovative Use of NLP for Building Educational Applications, Association for Computational Linguistics and the Asian Federation of Natural Language Processing, 12–22.
Yoon, Su-Youn, Yeonsuk Cho and Diane Napolitano. 2016. Spoken text difficulty estimation using linguistic features. In Proceedings of the 11th Workshop on Innovative Use of NLP for Building Educational Applications, Association for Computational Linguistics and the Asian Federation of Natural Language Processing, 1–6.
Downloads
Published
How to Cite
Issue
Section
License
Submission of your paper to this journal implies that the paper is not under submission for publication elsewhere. Material which has been previously copyrighted, published, or accepted for publication will not be considered for publication in this journal. Submission of a manuscript is interpreted as a statement of certification that no part of the manuscript is copyrighted by any other publisher nor is under review by any other formal publication. By submitting your manuscript to us, you agree on these copyright guidelines. It is your responsibility to ensure that your manuscript does not cause any copyright infringements, defamation, and other problems.
Submitted papers are assumed to contain no proprietary material unprotected by patent or patent application; responsibility for technical content and for protection of proprietary material rests solely with the author(s) and their organizations and is not the responsibility of the journal or its editorial staff. The main author is responsible for ensuring that the article has been seen and approved by all the other authors. It is the responsibility of the author to obtain all necessary copyright release permissions for the use of any copyrighted materials in the manuscript prior to the submission.
Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under the BY Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal
Article submission implies author agreement with this policy.