Opinion corpus for assessment of study abroad program
DOI:
https://doi.org/10.32714/ricl.06.02Keywords:
opinion corpus, study-abroad program assesment, classification, opinion mining, degree of positiveness/happinessAbstract
This study compiled an opinion corpus for developing a method for automatically evaluating a study-abroad program. Evaluation should cover not only academic experience at a host institution but also intercultural experience in the dormitory and interpersonal experience with local students, which helps improve a study-abroad program. The corpus included 600 students’ opinions on the satisfaction with academic, intercultural and interpersonal experiences, consisting of 40,024 words in total. Each opinion was annotated according to the opinion polarity determined by an existing sentiment classifier automatically. When automatically classified opinion polarity was compared with manually determined opinion polarity, a different distribution was observed. Because the existing classifier was not trained with a corpus that dealt with the issues related to students’ opinions about a study-abroad program, this result suggested the need of a corpus for study-abroad program evaluation. The opinion classifier of this study trained with the opinion corpus demonstrated a higher accuracy (83.5 percent) than the majority class baseline (70.9 percent).
Downloads
References
El-Halees, Alaa. 2011. Mining opinions in user-generated contents to improve course evaluation. In Jasni Mohamad Zain, Wan Maseri Wan Mohd and Eyas El-Qawasmeh eds. Software engineering and computer systems. Part II, Communications in computer and information science. Berlin: Springer-Verlag Berlin Heidelberg, 107–115.
Engle, Lilli and John Engle. 2004. Assessing language acquisition and intercultural sensitivity development in relation to study abroad program design. Frontiers: The Interdisciplinary Journal of Study Abroad 10: 219–236.
Kaewyong, Phuripoj, Anupong Sukprasert, Naomie Salim and Fatin Aliah Phang. 2015. The possibility of students’ comments automatic interpret using lexicon based sentiment analysis to teacher evaluation. In Proceeding of the 3rd International Conference on Artificial Intelligence and Computer Science, 179–189.
Leong, Chee Kian, Yew Haur Lee and Wai KeongMak. 2012. Mining sentiments in SMS texts for teaching evaluation. Expert Systems with Applications 39: 2584–2589.
Meyer, David. 2012. Support Vector Machines. The interface to libsvm in package e1071. https://datajobs.com/data-science-repo/SVM-in-R-[David-Meyer].pdf (accessed 27 July 2018)
Östmar, Mattias. 2011. Mood. https://www.uclassify.com/browse/prfekt/mood (accessed 27 July 2018)
Savicki, Victor and Elizabeth Brewer eds. 2015. Assessing study abroad: theory, tools, and practice. Sterling, VI: Stylus.
uClassify. 2015. The sentiment classifier. https://www.uclassify.com/browse/uclassify/sentiment (accessed 27 July 2018)
Downloads
Published
How to Cite
Issue
Section
License
Submission of your paper to this journal implies that the paper is not under submission for publication elsewhere. Material which has been previously copyrighted, published, or accepted for publication will not be considered for publication in this journal. Submission of a manuscript is interpreted as a statement of certification that no part of the manuscript is copyrighted by any other publisher nor is under review by any other formal publication. By submitting your manuscript to us, you agree on these copyright guidelines. It is your responsibility to ensure that your manuscript does not cause any copyright infringements, defamation, and other problems.
Submitted papers are assumed to contain no proprietary material unprotected by patent or patent application; responsibility for technical content and for protection of proprietary material rests solely with the author(s) and their organizations and is not the responsibility of the journal or its editorial staff. The main author is responsible for ensuring that the article has been seen and approved by all the other authors. It is the responsibility of the author to obtain all necessary copyright release permissions for the use of any copyrighted materials in the manuscript prior to the submission.
Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under the BY Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal
Article submission implies author agreement with this policy.